
journal of optimization theory and applications: Vol. 122, No. 2, pp. 323–343, August 2004 (© 2004)

Multiple-Spacecraft Reconfiguration through Collision
Avoidance, Bouncing, and Stalemate1

Y. Kim2, M. Mesbahi3, and F. Y. Hadaegh4

Communicated by M. J. Balas

Abstract. We consider constrained multiple-spacecraft reconfigura-
tions outside a gravity well in deep space. As opposed to the single-
spacecraft scenario, such reconfigurations involve collision avoidance
constraints that can be embedded in a nonconvex, state-constrained
optimal control problem. Due to the difficulties in solving this general
class of optimal control problems, we adopt a heuristically motivated
approach to multiple-spacecraft reconfigurations. Then, we proceed to
prove the convergence properties of the proposed approach for recon-
figurations involving an arbitrary number of spacecraft.

Key Words. Multiple-spacecraft reconfiguration, state-constrained
optimal control, collision avoidance, bouncing, stalemate, heuristic
algorithms.

1. Introduction

The distributed space system architecture has been identified as a
novel paradigm for many of the future NASA (Earth and deep space),
Air Force, Navy, and commercial satellite space missions (e.g., Refs. 1–8).
In this paper, we consider a generic problem that is embedded in the

1The research of the first two authors was supported by National Science Foundation
Grant CMS-0093456 and by a grant from Jet Propulsion Laboratory, California Institute
of Technology. The research of the third author was carried out at Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, California.

2Graduate Student, Department of Aeronautics and Astronautics, University of
Washington, Seattle, Washington.

3Assistant Professor, Department of Aeronautics and Astronautics, University of
Washington, Seattle, Washington.

4Senior Research Scientist, Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California.

323
0022-3239/04/0800-0323/0 © 2004 Plenum Publishing Corporation

324 JOTA: VOL. 122, NO. 2, AUGUST 2004

planning, guidance, and control of such multiple-spacecraft missions,
namely, the multiple-spacecraft collision-free reconfiguration problem out-
side a gravity well in deep space. A unique feature of this problem, as
opposed to a single-spacecraft reconfiguration (e.g. Ref. 9), is the presence
of collision-avoidance constraints. Such constraints appear as a set of
nonconvex state constraints when the desired reconfiguration strategy is
formalized in terms of an optimal control problem (Refs. 10–14). For
a dual-spacecraft system, this problem was solved recently via the opti-
mal control framework in Ref. 15. However, as it was observed in
Ref. 15, the solution methods that are based on necessary optimality con-
ditions become prohibitively complex as the number of spacecraft involved
in the reconfiguration increases. In view of these complications, in the
present paper we consider a heuristically motivated, greedy-like approach
to multiple-spacecraft reconfiguration. Notwithstanding, the heuristics is
introduced only to motivate the solution methodology; as we will see in
Section 3, the parameters in the appproach can be chosen to guarantee the
convergence of the resulting algorithm.

The paper is organized as follows. In Section 2, we formalize, dis-
cretize, and then reformulate the multiple-spacecraft reconfiguration prob-
lem. The heuristic approach and the resulting algorithm are described, first
informally and then more precisely in Section 3. The convergence proper-
ties of the heuristic approach are elaborated on first in Section 3.3 and
then in Section 3.5. Simulation results demonstrate the behavior of the
proposed algorithm for a representative mission scenario in Section 4.

A few words on the notation. For two sets A and B, A\B denotes
the set of elements that are in A but not in B. The inertial translational
state (position and velocity) of spacecraft i and the control force acting on
spacecraft i at time instant k are denoted by

xi(k) := [pi(k), vi(k)]T ∈R6

and ui(k), respectively. Moreover, we set

u(k) := [u1(k), u2(k), . . . , un(k)]T ∈R3n

to represent the multiple-spacecraft control vector at time instant k. The
2-norm of the vector x is denoted by ||x||; we use 〈x, y〉 for the inner
product of two vectors x and y. For a real number x, �x� is the least
integer greater than x. Finally, In×n and 0n×n designate the n×n identity
matrix and the zero matrix, respectively.

JOTA: VOL. 122, NO. 2, AUGUST 2004 325

2. Problem Statement: Discretization and Reformulation

The problem considered henceforth is as follows: the initial inertial
and desired relative translational states (positions and velocities) of the
multiple-spacecraft system are given. We are interested in specifying the
control forces that steer the space system to desired relative states, while
keeping away a certain minimum distance between each spacecraft pair
during the required maneuver.5 We note that the desired inertial transla-
tional states for the multiple spacecraft are not specified a priori. Instead,
each spacecraft is allowed to assume an arbitrary inertial terminal state
that is consistent with the desired relative state specifications. Therefore,
the collision-free multiple-spacecraft reconfiguration problem is that of
specifying the control forces

ui(t), i =1,2, . . . , n, t ∈ [t0, tf],

subject to the dynamic constraints6

ẋi (t)=Axi(t)+Biui(t), (1)

the initial and final relative positions

xi(t0), xj (t0) xi(tf)−xj (tf), (2)

and finally, for a given ρij > 0, with i, j = 1,2, . . . , n and i �= j , the colli-
sion-avoidance constraints

‖C{xi(t)−xj (t)}‖≥ρij , i �= j, t ∈ [t0, tf], (3)

where

A :=
[

03×3 I3×3
03×3 03×3

]
, Bi := (1/mi)

[
03×3
I3×3

]
, C := [

I3×3 03×3
]
.

The collision-avoidance constraints necessitate implicitly that

‖C{xi(t0)−xj (t0)}‖≥ρij , ‖C{xi(tf)−xj (tf)}‖≥ρij ,

for all i, j =1, . . . , n and i �= j .

5In this paper, we do not address the fuel/time optimality properties of the corresponding
control forces.

6This corresponds to modeling each spacecraft as a double integrator; see Ref. 15 for the
justification of such a simplification.

326 JOTA: VOL. 122, NO. 2, AUGUST 2004

Before we describe our heuristically motivated approach to this prob-
lem, let us employ “Euler’s first-order” discretization method and then
reformulate the reconfiguration problem in terms of the relative state vec-
tors among the multiple spacecraft. Thus, for each time instant k, we
denote the relative state of spacecraft i (with respect to a reference frame
attached to spacecraft j) by

xi/j (k) :=xi(k)−xj (k)= [pi/j (k), vi/j (k)]T ∈R6.

Now, for each k =0,1, . . . ,N −1, consider the optimization problem

min
u(k)

n∑
i=1

n∑
j=1

‖C{xi/j (k +2)−xi/j (N)}‖2, (4)

subject to the dynamic constraints

xi/j (k +1)= (I6×6 + sA)xi/j (k)+Bijui/j (k), (5)

where i, j,= 1,2, . . . , n and i �= j , the parameter s is the sampling time
(i.e., Ns = tf − t0), and for each k,

ui/j (k) :=ui(k)−uj (k)∈R3;

in Eqs. (4)–(5), the initial and final relative states are specified as

xi/j (0), xi/j (N), (6)

the collision constraints as

‖Cxi/j (k)‖≥ρij , i �= j, k =0,1, . . . ,N, (7)

and finally

A =
[

03×3 I3×3
03×3 03×3

]
, Bij =

[
03×3 03×3
(1/mi)I3×3 (−1/mj)I3×3

]
,

C = [
I3×3 03×3

]
.

Referring to (4), we note that the quantity ‖C{xi/j (k +2)−xi/j (N)}‖2 is a
natural choice to appear in the performance index, as one can only hope
to influence the relative position between a pair of spacecraft through the
application of the control force within a two-step lag. Moreover, pertain-
ing to the dimension of the optimization problem (4)–(7), we note that,
for a fixed index m, if the relative states xm/j , j = 1, . . . , n and j �= m,

JOTA: VOL. 122, NO. 2, AUGUST 2004 327

have already been specified, then all other relative states xi/j , (i, j =1,. . ., n

and i �= j) are automatically determined via the identities

xi/j (k)=−xm/i(k)+xm/j (k), k =0,1, . . . ,N.

Thus, only n − 1 (rather than n2 − n) dynamic constraints (5) need to be
included in the optimization problem (4)–(7) at each time step. In fact,
for some fixed index m, the multiple-spacecraft reconfiguration problem
can be reformulated as the reconfiguration of n−1 relative states xm/j , j =
1,2, . . . , n and j �= m, while avoiding the constrained regions specified by
the inequalities (7) with i, j =1, . . . , n and i �= j .

3. Heuristic Approach

The solution method considered in this paper is inspired by the
behavior of an elastic ball as it travels across a vertical column consist-
ing of obstacles; we will refer to the resulting procedure as the bouncing
ball (BB) algorithm. In this section, we first examine the issues that need
to be examined in such a framework via an example. Then, we proceed to
informally describe the BB algorithm.

Figure 1 serves as the starting point to develop the bouncing ball heu-
ristics. In this figure, spacecraft i and j are in the midst of a reconfigu-
ration while avoiding the spherical constraint set defined by ρij . It seems
natural that, at the outset of the maneuver, both spacecraft choose control

Fig. 1. Motivating the BB Algorithm.

328 JOTA: VOL. 122, NO. 2, AUGUST 2004

forces that are consistent with having the relative position pi/j follow a
straight-line trajectory (the solid line in the figure) from pi/j (0) to pi/j (N);
this can be done, for example, in an optimal fuel efficient or time efficient
manner. However, it can very well be that implementing such a strategy
guides the relative position vector pi/j to violate the collision constraint
(7); this situation is indicated by having

pi/j (k)=Qij , for some time index k,

in Fig. 1. In this case, the control forces on the two spacecraft are cho-
sen such that any further violation of the collision constraints is avoided,
causing the relative state vector pi/j to follow the solid line, instead of
the dashed line. We will refer to such a sudden change in the direction of
the control force as bouncing. An interesting complication that can poten-
tially occur following a bounce is that avoiding the first constraint vio-
lation might lead to yet another relative position conflict; this issue will
be considered in Section 3.1. For now, let us proceed assuming that this
complication does not arise. Thus, the two spacecraft move away from the
constrained region until

pi/j (k)=Rij , for some time index k,

in Fig. 1. At this point, the two spacecraft are again allowed to choose
control forces that are consistent with following a straight line trajectory
(the solid line) to reach the desired relative position pi/j (N), this time
starting from the relative position Rij .

3.1. Bouncing Ball Algorithm. We now present a more refined, yet
still informal, description of the bouncing ball (BB) algorithm for n-space-
craft reconfiguration. We include also remedies for the complication that
we pointed out in Section 2.

Algorithm BB (Informal Description)
Initialization. Let k =0 and ν =1.
Termination. For a prespecified, sufficiently small ε >0, if

‖xi/j (k)−xi/j (N)‖≤ ∈, i, j =1, . . . , n and i �= j,

terminate the algorithm.

Phase I. Moving from pi/j (k)→pi/j (N) or pi/j (k)→ Qij in Fig. 1.
At the time instant k, if none of the constraints (7) is violated, find the
control vector u(k) that minimizes the performance index (4). If the rela-
tive position vector pi/j (k) is on the boundary or inside its corresponding
forbidden region at some time instant k, proceed with Phase II below.

JOTA: VOL. 122, NO. 2, AUGUST 2004 329

Phase II. Find the control vector u(k) minimizing the performance
index (4), while ensuring that all relative velocities at the time instant k+1
are directed away from their respective constrained regions. If the result-
ing relative velocity vector vi/j (k + 1) is nonzero, apply the control u(k)

and proceed with Phase III below. However, if the resulting relative veloc-
ity vector vi/j (k+1) turns out to be equal to zero, implying that the vector
pi/j is stationary at the point Qij in Fig. 1, proceed with Phase II – Stale-
mate below.

Phase II – Stalemate. The aim of this phase is to reconfigure the
multiple spacecraft such that vi/j (k + 1) can assume a nonzero value in
Phase II above. For this purpose, the algorithm proceeds by finding first
the νth largest magnitude relative position, say pi/j ′ at time instant k.
Then, a control force is chosen ensuring that

vi/j (k +1)=0, for all j �= j ′, j �= i,

and vi/j ′(k +1) �=0 is directed away from its associated constrained region.
When the magnitude of pi/j ′ reaches a prescribed value away from its
associated constrained region, the algorithm proceeds with Phase II above.
If the algorithm still obtains a zero value for the relative velocity vector
vi/j (k +1), we let ν = ν +1 and invoke Phase II-Stalemate again. We note
that, after at most n − 2 calls to Phase II-Stalemate, all relative position
vectors are sufficiently away from pi/j (k) so that vi/j (k +1) can eventually
assume a nonzero value. For the example shown in Fig. 2, with n=6 and
i = 6, implementing Phase II-Stalemate results in having, for some time
index k, the identities

p6/j (k)=Tj , j =1,2, . . . ,5.

Phase III. Moving from Qij to Rij in Fig. 1. Let the control force
u(k)=0, implying that every relative velocity remains constant, until pi/j

assumes the value Rij on the boundary of the sphere associated with the
equation ‖Cxi/j‖=ρ′

ij (see Fig. 1); the algorithm then proceeds with Phase
I above.

In Section 3.5, we will show that the value of the parameters
ρ′

ij , i, j = 1, . . . , n and i �= j , in Phase III of the BB algorithm can be
chosen such that every relative position vector is guaranteed to experience
a finite number of bounces during the entire reconfiguration. In fact, the
required number of bounces is a function of the number of spacecraft
n and the ratios ρ′

ij /ρij , i, j = 1, . . . , n and i �= j , implicitly selected in
Phase III.

330 JOTA: VOL. 122, NO. 2, AUGUST 2004

Fig. 2. Phase II - Stalemate of the BB Algorithm; the relative state p6/1 is initially
stationary on the boundary of its constrained region.

3.2. Computational Aspects of the BB Algorithm. We elaborate now
on the computational aspects of the BB algorithm. We note first that, in
Phases I and III, where the collision constraints (7) are not active, the
control forces are obtained by solving the unconstrained quadratic pro-
gram (4)–(5). However, in Phase II, where at least one of the collision
constraints (7) is violated, the control forces cannot be obtained by solv-
ing a simple mathematical program, as the corresponding feasible set is
nonconvex.

As an example, consider the trajectory of a particular relative state
(say x1/2, shown in Fig. 3), where the relative position vector p1/2 is about
to violate the constrained region defined by ‖Cx1/2(k)‖≥ρ12 at the time
instant k; concurrently, we consider a case where the vector p1/2(k) is sur-
rounded closely by the other relative states. In such a situation, it is intu-
itive to require that the relative velocity vector v1/2(k +1) satisfy

〈
v1/2(k +1),p1/2(k)

〉 ≥0, (8)

so that p1/2 is not led to a further violation of the corresponding con-
straint; see the dashed area in Fig. 3 containing the vector p1/2(k). How-
ever, as we will see in Section 3.5, the constraint (8) would not guarantee
the convergence of the BB Algorithm by itself; in fact, we will need an

JOTA: VOL. 122, NO. 2, AUGUST 2004 331

Fig. 3. Several relative states surround the relative position vector p1/2(k).

additional set of conditions of the form

〈
v1/2(k +1),p1/2(k)

〉=0,
〈
v1/2(k +1),p1/2(N)

〉 ≥0, (9)

ensuring that the relative velocity vector v1/2(k + 1) is pointed away from
the constraint region and is directed toward the final position p1/2(N).
Furthermore, we need to impose constraints on the relative velocity vec-
tors ensuring that every other relative state xi/j , j = 3, . . . , n, avoid a vio-
lation of their respective collision constraints after the application of the
computed control force u(k). Thus, we are led to include the inequalities

〈
v1/j (k +1),p1/j (k)

〉≥0, j =3,4, . . . , n,〈
vi/j (k +1),pi/j (k)

〉≥0, i, j =2,3, . . . , n, and i �= j.

We propose thereby that, when one relative state vector xp/q is about
to violate a constraint at time instant k, the multiple-spacecraft control
u(k) is obtained by solving the (convex) quadratic program

min
u(k)

n∑
i=1

n∑
j=1

‖C{xi/j (k +2)−xi/j (N)}‖2, (10)

332 JOTA: VOL. 122, NO. 2, AUGUST 2004

subject to the constraints〈
D{(I6×6 + sA)xp/q(k)+Bpqup/q(k)}, pp/q(N)

〉≥0, (11)〈
D{(I6×6 + sA)xp/q(k)+Bpqup/q(k)}, pp/q(k)

〉=0, (12)〈
D{(I6×6 + sA)xi/j (k)+Bijui/j (k)}, pi/j (k)

〉≥0, (13)

where D := [03×3 I3×3], with i, j ∈{1, . . . , n}\{p,q} and i �= j.

3.3. Convergence Properties: Preliminary Considerations. We proceed
now to investigate further the convergence properties of the BB Algorithm
described in Section 3.1. Referring to Fig. 1, we note first that, during
the execution of the algorithm, all relative states xi/j that have reached
their respective liberating points Rij after a bounce, should be directed to
their respective final relative states xi/j (N). However, one cannot rule out
further relative position violations, leading to a set of possible infinitely
many bounces for xi/j . Our objective in this section is to obtain conditions
under which all relative states are guaranteed to reach their final desired
values within a finite number of bounces.

As an example, consider the relative state xi/j , which has just expe-
rienced a bounce (see Fig. 4). Furthermore, suppose that another rel-
ative state (say xs/t) violates its associated constrained set defined by
‖Cxs/t (k)‖≥ρst , at time instant k. The quadratic programs (10)–(13), in
which the vectors xs/t and xi/j , satisfy (11), (12) and (13) respectively, are
then solved to find the corresponding control forces. Let us presume that

Fig. 4. Undesirable trajectory (solid lines with an arrow) for the relative position
vector pi/j .

JOTA: VOL. 122, NO. 2, AUGUST 2004 333

implementing the BB Algorithm causes pi/j to assume initially the vector
value R′

ij and then be directed toward its final desired value pi/j (N). As
shown in Fig. 4, the trajectory of pi/j intersects the constrained region at
the point Q′

ij , leading to yet another bounce. In fact, we note that this
repeated bouncing can potentially occur infinitely many times. To rule out
such an undesirable behavior, we impose a set of additional constraints
on the relative velocity vector vi/j (k + 1) in addition to (13), in order
to reduce, and in fact provide an upper bound on, the total number of
required bounces. In this venue, consider the inequalities

〈
vi/j (k +1), b

〉≥0, (14)〈
vi/j (k +1),pi/j (k)

〉≥0, (15)

where

b :=pi/j (k)+ t (pi/j (N)−pi/j (k)), (16)

with

t =− 〈
pi/j (k),pi/j (N)−pi/j (k)

〉
/‖pi/j (N)−pi/j (k)‖.

The inequality (14) represents the half-space defined by the normal
vector b, as shown in Fig. 1, perpendicular to and passing through the line
containing the two relative position vectors pi/j (k) and pi/j (N). The
inequality (15), much in the spirit of the inequality (13), ensures that the
relative state xi/j stays outside its constrained region. As a consequence
of imposing these inequalities, the relative position vector pi/j lies at the
intersection of the two half-spaces represented by (14) and (15), even after
undergoing a bounce. As we will see in Section 3.5, this last property
enables us to bound the total number of relative position bounces required
during the reconfiguration.

With the vector b defined as in (16) and

(s, t)∈I ={(s, t)|xs/t has just experienced a bounce}, (17)

we are led to the following quadratic program, where it is assumed that
the relative state xp/q is about to violate its associated constraint set at the
time instant k:

min
u(k)

n∑
i=1

n∑
j=1

‖C{xi/j (k +2)−xi/j (N)}‖2, (18)

334 JOTA: VOL. 122, NO. 2, AUGUST 2004

subject to the constraints〈
D{(I6×6 + sA)xp/q(k)+Bpqup/q(k)}, pp/q(N)

〉 ≥ 0, (19)〈
D{(I6×6 + sA)xp/q(k)+Bpqup/q(k)}, pp/q(k)

〉=0, (20)〈
D{(I6×6 + sA)xs/t (k)+Bstus/t (k)}, b〉 ≥ 0, (21)〈
D{(I6×6 + sA)xs/t (k)+Bstus/t (k)}, ps/t (k)

〉 ≥ 0, (22)〈
D{(I6×6 + sA)xi/j (k)+Bijui/j (k)}, pi/j (k)

〉 ≥ 0. (23)

In (18)–(23), (s, t) �= (p, q) and (i, j) in inequality (23) runs through all
pairs from i, j = 1,2, . . . , n with i �= j except (p, q) and the pairs already
in the set I (17).

We note that our solution strategy for multiple-spacecraft reconfig-
uration involves essentially transforming the original nonconvex program
(4)–(7) to a sequence of convex quadratic programs of the form (18)–(23)
that can be solved efficiently via available software (e.g., Ref. 16).

3.4. Algorithm BB Revisited. We present now the formal description
of the proposed BB Algorithm.

Algorithm BB (Formal Description).

Step 1. Let n be the number of spacecraft and for i, j = 1,2, . . . , n

and i �= j , let xi/j (0) and xi/j (N) be the initial and final rel-
ative states.

Step 2. Initialize the parameters k =0 and ν =1.7

Step 3. Initialize the bouncing flag Bounce to be inactive.
Step 4. Initialize the set of indices for which the relative states xi/j

have just experienced a bounce (I) to the null set.
Step 5. For i, j = 1,2, . . . , n and i �= j , while for a prespecified, for

sufficiently small ε >0,‖xi/j (k)−xi/j (N)‖>ε:

(a) if Bounce = inactive and

(i) if ‖Cxi/j (k)‖>ρij , solve (4)–(6) for the control
force vector u(k);

(ii) if ‖Cxs/t (k)‖≤ρst for some (s, t), solve (18)–(23)
for the control force vector u(k);

(iii) if vs/t (k+1) �=0, set Bounce=active and add (s, t)

to the set I;
(iv) if vs/t (k + 1) = 0, call the subroutine Stalemate

and then go to Step 5;

7Both k and ν are global parameters that are not initialized by a subroutine call.

JOTA: VOL. 122, NO. 2, AUGUST 2004 335

(b) if Bounce = active and

(i) if ‖Cxs/t (k)‖>ρ′
st , solve (4)–(6) for the control

force vector u(k) and set Bounce = inactive;
(ii) if ρst <‖Cxs/t (k)‖≤ρ′

st , set u(k)=0.

Step 6. For i, j =1,2, . . . , n and i �= j , obtain xi/j (k +1) from equa-
tion (5) by substituting the control force vector u(k) found
in Step 5.

Step 7. Increment k by one and go to Step 5.

Subroutine Stalemate

Step 1. Define the sequence {aw}n−1
w=1, enumerating, in an increasing

order, the ratios ‖ps/j‖/ρst for all j �= s.
Step 2. Construct the sequence {bw}n−1

w=1 such that b1 :=ρ′
st /ρst and,

for w ≥2, bw := max{bw−1 +1, �aw�}.
Step 3. If ν <n−1:

(i) identify j ′ :={j |maxj �=s ‖ps/j‖ and ‖ps/j‖≤bn−νρst};
(ii) find the control force vector u(k) such that, for

all j �= j ′ and j �= s, vs/j (k + 1) = 0 and vs/j ′(k + 1)

satisfies (21)–(22) or (23), depending on whether
xs/j ′ has just experienced a bounce, while minimizing
(18);

(iii) increment ν by one.

Step 4. If ν =n− 1, let j ′ = t and find the control force vector u(k)

such that vs/j (k + 1) = 0 for all j �= j ′ and j �= s, and such
that vs/j ′(k +1) satisfies (19)–(20), while minimizing (18).

Step 5. Obtain xi/j (k +1), for i, j =1,2, . . . , n and i �= j , from equa-
tion (5) by substituting u(k) just found and increment k by
one.

Step 6. While ‖ps/j ′ ‖<bn−νρst , set u(k) :=0 and obtain xi/j (k + 1),
for i, j = 1,2, . . . , n and i �= j , from equation (5) and then
increment k by one.

3.5. Convergence Properties Revisited. We now consider the feasibility
and convegence properties of the BB Algorithm described in Section 3.4.

Proposition 3.1. The convex quadratic program (18)–(23) has a non-
trivial feasible solution (e.g., not all relative velocities are zero).

336 JOTA: VOL. 122, NO. 2, AUGUST 2004

Proof. Consider the following constraints that are equivalent to
(19)–(23):〈

vp/q(k +1),pp/q(N)
〉 ≥ 0, (24)〈

vp/q(k +1),pp/q(k)
〉=0, (25)〈

vs/t (k +1), b
〉 ≥ 0, (26)〈

vs/t (k +1),ps/t (k)
〉 ≥ 0, (27)〈

vi/j (k +1),pi/j (k)
〉 ≥ 0, (28)

where the vector b is defined in (16), (s, t) �= (p, q), and the indexed pair
(i, j) in (28) runs through all pairs from i, j, =1,2, . . . , n with i �= j ,
except (p, q) and the pairs already in I (17). We note that the decision
variables that appear in the constraints (24)–(28) are the relative velocities,
rather than the relative control forces; the required control forces can be
recovered always from the variables vp/q, vs/t , and vi/j via equation (5).

Suppose that one of the relative states, say x1/2, is about to vio-
late its associated constraint, as shown in Fig. 3 [that is, p = 1 and q =
2 in (24)–(25)]. The BB Algorithm requires henceforth that every rela-
tive state at time instant (k + 1) is directed away from its respective con-
strained region. Consider another relative position, say x1/j (k), j �=2, that
is the furthest from the associated constrained region (Fig. 3). We observe
that the vector vi/j ′(k + 1) = 0, for j ′ = 2, . . . , n and j ′ �= j , satisfies the
constraints (24)–(25). Moreover, one can always find the nonzero rela-
tive vector v1/j (k + 1) to satisfy either (26)–(27) or (28), depending on
whether x1/j has just experienced a bounce; this is accomplished by choos-
ing v1/j (k+1) to lie in set defined by (26)–(27) if x1/j has just experienced
a bounce (the dashed area associated with x1/j (k) in Fig. 3), or choosing
v1/j (k+1) to lie in the half-space defined by (28) otherwise. Thus, the qua-
dratic program (18)–(23) always admit a nontrivial feasible solution.

We present now a convergence result that elevates the status of the
BB Algorithm from merely being a “heuristic” approach to multiple-
spacecraft reconfiguration. The proof of this result also justifies and high-
lights the importance of the parameters ρij introduced in Phase III of the
BB Algorithm.8

Theorem 3.1. Let η = ρ′
ij /ρij , for all i, j = 1, . . . , n and i �= j . Then

the n-spacecraft reconfiguration algorithm (BB Algorithm) converges

8Incidentally, these parameters influence the fuel expenditure of the corresponding
reconfiguration.

JOTA: VOL. 122, NO. 2, AUGUST 2004 337

within at most Kn(n− 1)/2 bounces, where K is the smallest integer sat-
isfying

K−1∑
k=1

θk + θ ′
K ≥π/2; (29)

in (29), the angles θk and θ ′
k are found via the recursions

θ ′
k = tan−1

[√
η2 −1− sin(

∑k−1
i=1 θ ′

i)

1+ cos(
∑k−1

i=1 θ ′
i)

]
,

θk =
k−1∑
i=1

θi +2θ ′
k.

Proof. The number of required bounces is obtained by calculating
the angles by which a relative position vector evolves with respect to the
origin of its associated constrained region. In this venue, we consider a
worst-case scenario, where the initial and final relative positions are the
endpoints of a diameter of the corresponding constrained region, yielding
an upper bound on the number of bounces. Figure 5 shows such a situa-
tion where, for some initial and final positions pi/j (0) and pi/j (N),

∠{−−−−−→
Opi/j (0),

−−−−−−→
Opi/j (N)}=π.

Fig. 5. Worst-case scenario for the relative position vector pi/j in terms of the required
number of bounces.

338 JOTA: VOL. 122, NO. 2, AUGUST 2004

Here, ∠{a, b} denotes the angle between the two vectors a and b; −→
ab

denotes the vector difference b − a. Following the steps of the BB Algo-
rithm, the relative position vector pi/j may assume subsequently the values
R1

ij ,Q
2
ij ,R

2
ij , etc. (more on this below). We proceed to determine the quan-

tities

θk =∠{−−−→
OQk

ij ,
−−−−→
OQk+1

ij }, k =1,2, . . . ,

after the kth bounce. A simple geometrical observation yields the follow-
ing recursive equations for these angles:

θ ′
k = tan−1

[√
η2 −1− sin(

∑k−1
i=1 θ ′

i)

1+ cos(
∑k−1

i=1 θ ′
i)

]
, θk =

k−1∑
i=1

θi +2θ ′
k,

where η = ρ′
ij /ρij . We note that the relative position vector pi/j may not

reach the points Qk
ij or Rk

ij , depending on the behavior of the other rel-
ative states. However, the new vectors NQk

ij and NRk
ij , will lead to even

larger values for the sequence θk by (21)–(23) due to the presence of other
relative states (see Fig. 6). In fact, the presence of other relative states will
generally reduce the total number of required bounces. Let us clarify fur-
ther this last observation via an example. Suppose that the position vec-
tor pi/j has assumed the vector value Qk

ij and then Rk
ij ; and suppose that

it now is heading toward the final relative position vector pi/j (N). Mean-
while, let another relative state (say pi/j ′) violate its corresponding con-
straint set. Observe that the vector pi/j may not assume the value Qk+1

ij ,
and thus the trajectory depicted by the solid line in Fig. 6 (without an
arrow) becomes infeasible. Instead, the vector pi/j has to evolve along a
different trajectory (solid line with an arrow in Fig. 6) that satisfies (21)
and (22). As pi/j ′ assumes the value Ri/j ′ , the vector pi/j arrives at the
point P and then is directed toward pi/j (N). Thus, we observe that pi/j

will assume the value NQk+1
ij , thereby yielding our previous claim that

Nθk ≥ θk. For a fixed value of ρ′
ij and when QK+1

ij is pi/j (N) (see Fig. 7),
one has

K−1∑
i=1

θi + θ ′
K ≥ π/2.

Since for an n-spacecraft reconfiguration at most n(n−1)/2 relative states
constraints are involved, at most Kn(n− 1)/2 bounces will suffice for the
entire reconfiguration.

JOTA: VOL. 122, NO. 2, AUGUST 2004 339

Fig. 6. New values for Qk+1
ij and θk (NQk+1

ij and Nθk , respectively) due to the close
proximity of another relative position vector.

Fig. 7. The case where the inequality �K−1
i=1 θi + θ ′

K ≥π/2 holds.

340 JOTA: VOL. 122, NO. 2, AUGUST 2004

Table 1. K vs. η.

η 1.0001 1.001 1.01 1.1 1.5 2 10 100

K 218 67 20 6 3 2 2 2

Fig. 8. Variation of the BB Algorithm: The bounced state pi/j follows an smooth path join-
ing Q′

ij and R′
ij .

Table 1 tabulates the required values of the parameter K for vari-
ous values of η in Theorem 3.1. Note that each relative state requires
at most two bounces during reconfiguration when ρ′

ij is sufficiently large
(ρ′

ij ≥1.733ρij). At the same time, when η≈1, the bouncing trajectories
resemble the smoother reconfiguration trajectories (see Ref. 15) at the
expense of possibly a higher number of required bounces (Fig. 8).

4. Simulation Results

We illustrate now the behavior of the BB Algorithm via an exam-
ple. The example involves a five-spacecraft reconfiguration that is particu-
larly relevant to the NASA Terrestrial Planet Finder mission (Ref. 1). We
assume that each spacecraft has unit mass, that the required minimum dis-
tance between any pair of spacecraft ρij , for i, j = 1, . . . ,5 and i �= j , is
3 length units, and that the parameters ρ′

ij , for i, j = 1, . . . ,5 and i �= j ,
employed in Phase III of the BB Algorithm are twice the corresponding
ρij . The initial and final conditions for this example are chosen such that

JOTA: VOL. 122, NO. 2, AUGUST 2004 341

the first and second spacecraft’ and also the third and fourth spacecraft’
have to interchange their inertial positions, respectively. The initial and the
final states of the fifth spacecraft are chosen such that it is an obstacle for
the reconfiguration of the other four spacecraft. Specifically, we have the
initial conditions

x1(t0)= [0,0,0,0,0,0]T , x2(t0)= [10,10,10,0,0,0]T ,

x3(t0)= [10,0,0,0,0,0]T , x4(t0)= [0,10,10,0,0,0]T ,

x5(t0)= [0,0,10,0,0,0]T ,

and the (“desired final conditions”)

x1(tf)−x2(tf)= [10,10,10,0,0,0]T ,

x1(tf)−x3(tf)= [10,0,0,0,0,0]T ,

x1(tf)−x4(tf)= [0,10,10,0,0,0]T ,

x1(tf)−x5(tf)= [0,0,10,0,0,0]T ,

with t0 = 0 and tf is unspecified. Figure 9 depicts the five spacecraft
trajectories (inertial positions) after applying the BB Algorithm. As shown
in this figure, each spacecraft moves initially from its initial state Ii ,
consistent with reaching the desired final relative state Fi, i = 1,2, . . . ,5.
Shortly thereafter, all spacecraft enter their respective collision zones,
reaching the points Q1i , i = 1,2, . . . ,5. In particular, we note that the
relative states x1/3, x1/5, x2/4, x4/5 are about to violate the corresponding

Fig. 9. Example of five-spacecraft reconfiguration trajectories under the BB Algorithm.

342 JOTA: VOL. 122, NO. 2, AUGUST 2004

constraints of the form (7). Then, the algorithm proceeds to choose one
of the violating relative states (say x4/5) as xp/q and set the other states as
xi/j , to solve the quadratic program (18)–(23) for the control forces u(k).
This causes the multiple spacecraft to move away from each other, until
the fourth and fifth spacecraft position vectors assume the vector values
R14 and R15, respectively. We note that the relative position vector p4/5
satisfies ‖p4/5‖= 6 at R14 and R15. Now, starting from R1i , i = 1,2, . . . ,5,
each spacecraft attempts to move toward its final desired state. Shortly
thereafter, the relative state x2/5 comes close to the violation of its con-
straint set at Q22 and Q25. As in the previous bounce, the BB Algorithm
calculates the required control forces by solving the quadratic program
(18)–(23); however, this time the relative state vectors x2/5 and x4/5 replace
the corresponding xp/q and xs/t . This leads each spacecraft pair to move
away from each other until the second and fifth spacecraft reach the vector
values R22 and R25, respectively, where ‖p2/5‖=6. Now, starting from the
points R2i , i = 1,2, . . . ,5, each spacecraft moves consistently with reach-
ing its terminal states. As illustrated in Fig. 9, only two bounces suf-
fice for the complete reconfiguration. In fact, our extensive simulations
for three-to-five spacecraft missions suggest that generally the subroutine
Stalemate of Section 3.4 does not need to be invoked in the execution of
the BB Algorithm.

5. Concluding Remarks

Due to the inherent nonconvex nature of the multiple-spacecraft
collision-free reconfiguration problem in deep space, in this paper we
considered a heuristically motivated approach for its solution. Then,
we formalized the resulting approach and proposed an algorithm for
the multiple-spacecraft reconfiguration that is built around solving con-
vex quadratic programs. Moreover, we elaborated on the convergence
properties of this reconfiguration algorithm for distributed space systems
consisting of an arbitrary number of spacecraft. We note that an attractive
feature of the proposed algorithm is its relative insensitivity to the sudden
appearance or disappearance of a particular set of dynamic and static con-
straints during the course of the reconfiguration.

References

1. Anonymous, TPF Book: Origins of Stars, Planets, and Life, Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, California, 1999.

JOTA: VOL. 122, NO. 2, AUGUST 2004 343

2. Wang, P. K. C., and Hadaegh, F. Y., Coordination and Control of Multiple
Microspacecraft Moving in Formation, Journal of the Astronautical Sciences,
Vol. 44, pp. 315–355, 1996.

3. Tomlin, C., Pappas, G. J., and Sastry, S., Conflict Resolution for Air Traffic
Management: A Study in Multi-Agent Hybrid Systems, IEEE Transactions on
Automatic Control, Vol. 43, pp. 509–521, 1998.

4. Mesbahi, M., and Hadaegh, F. Y., Mode and Logic-Based Switching for the
Formation Flying Control of Multiple Spacecraft, Journal of the Astronautical
Sciences, Vol. 49, pp. 443–468, 2001.

5. Frazzoli, E., Mao, Z. H., Oh, J. H., and Feron, E., Aircraft Conflict Resolu-
tion via Semidefinite Programming, Journal of Guidance, Control, and Dynam-
ics, Vol. 24, pp. 79–86, 2001.

6. Kang, W., Sparks, A., and Banda, S., Coordinated Control of Multi-Satellite
Systems, Journal of Guidance, Control, and Dynamics, Vol. 24, pp. 360–368,
2001.

7. Mesbahi, M., and Hadaegh, F. Y., Formation Flying Control of Multiple
Spacecraft via Graphs, Matrix Inequalities, and Switching, Journal of Guid-
ance, Control, and Dynamics, Vol. 24, pp. 369–377, 2001.

8. Beard, R., Lawton, J., and Hadaegh, F. Y., A Coordination Architecture for
Spacecraft Formation Control, IEEE Transactions on Control Systems Tech-
nology, Vol. 9, pp 777–790, 2001.

9. Sidi, M., Spacecraft Dynamics and Control, Cambridge University Press, New
York, NY, 1997.

10. Mehra, R. K., and Davis, R. E., A Generalized Gradient Method for Optimal
Control Problems with Inequality Constraints and Singular Arcs, IEEE Trans-
actions on Automatic Control, Vol. 17, pp. 69–78, 1972.

11. Bryson, A., and Ho, Y. C., Applied Optimal Control, Taylor and Francis, New
York, NY, 1981.

12. Stengel, R. F., Optimal Control and Estimation, Dover, New York, NY, 1994.
13. Vinter, R., Optimal Control, Birkhaüser, Boston, Massachusetts, 2000.
14. Richards, A., Schouwenaars, T., How, J. P., and Feron, E., Spacecraft

Trajectory Planning with Collision and Plume Avoidance Using Mixed-Integer
Linear Programming, Journal of Guidance, Control and Dynamics, Vol. 25,
pp. 755–764, 2002.

15. Kim, Y., Mesbahi, M., and Hadaegh, F. Y., Dual-Spacecraft Formation Flying
in Deep Space: Optimal Collision-Free Reconfigurations, Journal of Guidance,
Control, and Dynamics, Vol. 26, pp. 375–379, 2003.

16. Anonymous, Optimization Toolbox User’s Guide, The MathWorks, Natick,
Massachusetts, 2003.

